Muscle and Brawn Forums

Muscle and Brawn Forums (
-   General Fitness & Health (
-   -   About BCAA (

Rich Knapp 02-03-2012 11:57 AM

About BCAA

All About BCAA

by Ryan Andrews, December 15th, 2008.

What are branched chain amino acids?

Amino acids are the building blocks of protein. Branched chain amino acids (BCAAs) are so called because of their structure, which includes a “side chain” of one carbon atom and three hydrogen atoms. There are three BCAAs: leucine, isoleucine, and valine. Of these, leucine is the most heavily researched, and appears to offer the biggest physiological benefit. (More on that below.)

For the science geeks, these hydrophobic (water-fearing) amino acids are referred to as “aliphatic” (from the Greek aleiphar, or oil), as their central carbon attaches to a branched non-cyclic, open carbon chain.

BCAA structure. Source: University of Illinois

BCAAs provide the basis for protein synthesis and energy production (Harper AE et al 1984; Patti ME et al 1998; Xu G et al 1998; Anthony JC et al 2001). In fact, BCAAs can comprise up to one-third of muscle protein (Mero 1999). Because of their prevalence and involvement in protein synthesis and energy production, BCAAs are important to many metabolic processes.

However, if BCAAs are going to participate in these processes, they must be available to the body. This means we have to eat enough BCAAs, and at the right times, to enable such processes to occur.

Why is adequate BCAA intake so important?

The BCAAs are the only amino acids not degraded in the liver. All other amino acids are regulated by the gut and the liver before being circulated elsewhere in the body. However, BCAAs head directly into the bloodstream. This means that dietary intake of BCAAs directly influences plasma levels and concentrations in muscle tissue (Layman DK 2003). Interestingly, BCAAs are burned for energy (oxidized) during exercise, so they’re also an important exercise fuel.

Consuming BCAAs before training can increase uptake into muscle tissue (Mittleman KD et al 1998). This has many benefits:
1.BCAA supplementation may lower lactate levels after resistance training and improve muscular oxidation.
2.BCAAs may increase growth hormone (GH) circulation, which may be related to anabolic mechanisms causing muscle growth (De Palo EF et al 2001).
3.BCAA supplementation may decrease serum concentrations of the intramuscular enzymes creatine kinase and lactate dehydrogenase following prolonged exercise. This can decrease muscle damage and improve recovery (Coombes JS, McNaughton LR 2000).

Muscle is an important site of BCAA activity. There is an increased cell concentration and breakdown of BCAAs in muscle tissue (Layman DK 2003). BCAAs are continuously released from the liver and other internal organs to skeletal muscle so that the BCAAs can assist in maintaining blood sugar levels. Indeed, BCAAs may be responsible for up to 40% of blood sugar production during exercise (Ahlborg G et al 1974; Ruberman NB 1975; see also Layman DK 2003).

Glucose production from amino acids. Image from

What you should know

Because BCAAs are so important to muscle tissue, and because they help maintain blood sugar levels, it’s important to get enough to support your workouts. Consuming a carbohydrate, protein, and amino acid beverage during and after training can induce an insulin response, which helps transport BCAAs into cells. However, availability of leucine is more important than insulin. Within the muscle cell there’s one particular regulatory pathway for protein synthesis that’s stimulated by insulin, but dependent on leucine (Anthony et al 2000). In other words, protein synthesis (and hence muscle rebuilding) depends on how much leucine is available. And since BCAA levels decline with exercise, it makes sense to supplement with them during and/or after workouts (Mero 1999).

Because it’s so important to have leucine available for protein synthesis, if you train in a fasted state, or don’t eat after exercise, you’re going to lose more protein than you rebuild. However, if you eat adequate BCAAs during this time, especially leucine, you’ll enhance protein synthesis.

For extra credit

For the body to make new proteins, it needs an estimated daily leucine intake of between 1 to 4 grams/day (FAO/WHO/UNU 1985). That minimum intake needs to be met before leucine will be able to impact the insulin signaling pathway. But that’s just a baseline. Actual metabolic use, especially by athletes and people doing heavy resistance training, may be upwards of 12 grams/day.

There is a theory that BCAAs can limit central fatigue with endurance athletes, but it doesn’t appear to be supported by current data.

BCAA content of foods (grams of amino acids/100 g of protein)

Whey protein isolate 26%
Milk protein 21%
Muscle protein 18%
Soy protein isolate 18%
Wheat protein 15%

Source: USDA Food Composition Tables

Summary and recommendations

BCAAs play an important role in:
•Synthesis of proteins in general
•Glucose homeostasis (i.e. keeping blood sugar levels constant)
•Direct regulation of muscle protein synthesis (via insulin signaling cascade)

BCAAs’ potential impact on the aforementioned processes depends upon availability and dietary intake.

Adequate consumption of BCAAs may help manage body fat, spare muscle mass, and regulate glucose/insulin balance.

How can you put this knowledge to use?

Try adding BCAAs into your workout drink at a rate of 5 g BCAA per hour of training.

During periods of lower calorie intake, try adding a BCAA supplement every 2-4 hours during the day.


Anthony JC, et al. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr 2001;131:856S-860S.

Anthony JC, et al. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr 2000;130:139-145.

Ahlborg G, et al. Substrate turnover during prolonged exercise in man. J Clin Invest 1974;53:1080-1090.

Coombes JS, McNaughton LR. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness 2000;40:240-246.

De Palo EF, et al. Plasma lactate, GH and GH-binding protein levels in exercise following BCAA supplementation in athletes. Amino Acids 2001;20:1-11.

FAO/WHO/UNU. Energy and protein requirements. Report of joint FAO/WHO/UNU expert consultation. WHO Tech Pep Ser 1985;724:1-206.

Garlick PJ. The role of leucine in the regulation of protein metabolism. J Nutr. 2005 Jun;135(6 Suppl):1553S-6S. Review.

Harper AE, et al. Branched-chain amino acid metabolism. Annu Rev Nutr 1984;4:409-454.

Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J Nutr 2003;133:261S-267S.

Mero A. Leucine supplementation and intensive training. Sports Med 1999;27:347-358.

Mittleman KD, et al. Branched chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exerc 1998;30:83-91.

Patti ME, et al. Bidirectional modulation of insulin action by amino acids. J Clin Invest 1998;101:1519-1529.

Ruberman NB. Muscle amino acid metabolism and gluconeogenesis. Ann Rev Med 1975;26:245-258.

Xu G, et al. Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta cells. J Biol Chem 1998;273:28178-28184.
Interesting read.

Rich Knapp 02-03-2012 12:03 PM


Leucine works with the amino acids isoleucine and valine to repair muscles, regulate blood sugar, and provide the body with energy. It also increases production of growth hormones, and helps burn visceral fat, which is located in the deepest layers of the body and the least responsive to dieting and exercise.

Leucine, isoleucine, and valine are branched-chain amino acids (BCAAs), and all three of them help promote muscle recovery after exercise. Leucine is the most effective BCAA for preventing muscle loss because it breaks down and is converted to glucose more quickly than isoleucine and valine. Increased glucose supplies prevent the body’s cannibalization of muscle for energy during intense workouts, so it is no surprise that this amino acid supplement is popular among professional body builders. Leucine also promotes the healing of bones, skin, and muscle tissue after traumatic injury, and is often recommended for those recovering from surgery.

Because it is so easily converted to glucose, leucine helps to regulate blood sugar; a deficiency of leucine produces symptoms similar to those of hypoglycemia, which may include headaches, dizziness, fatigue, depression, confusion, and irritability.

Natural sources of leucine include brown rice, beans, meat, nuts, soy flour, and whole wheat. Leucine is an essential amino acid, which means that it cannot be manufactured in the body and must be obtained through dietary sources. People that exercise a lot, have a low-protein diet, or are seriously trying to build muscle mass should consider leucine supplementation. Leucine is also available in stand-alone supplemental form, but should always be taken together with the other two branched-chain amino acids, isoleucine and valine. The ideal balance is 2 milligrams of leucine and valine for each 1 milligram of isoleucine. Combination supplements that provide all three of the BCAAs may be more convenient.

An excessively high intake of leucine has also been linked to the development of pellagra, a deficiency of the vitamin niacin that causes dermatitis, diarrhea, and mental disorders. Too much leucine in the diet can disrupt liver and kidney function and increase the amount of ammonia in the body. People with impaired liver or kidney function should not take isoleucine without first consulting a physician, as large doses of amino acids may aggravate these conditions.
The 2 to 1 isn't 100% fact at this time yet. To play it safe I use the ratio.

All times are GMT -5. The time now is 01:48 AM.

Powered by vBulletin® Version 3.8.5
Copyright ©2000 - 2017, vBulletin Solutions, Inc.